T: f: (a,b) R

- If $f'(x) \ge 0$ on an interval $(a,b) \Rightarrow f$ is monotone increasing on (a,b),
- if f'(x) > 0 on an interval $(a,b) \Rightarrow f$ is strictly monotone increasing on (a,b),
- if $f'(x) \le 0$ on an interval $(a,b) \Rightarrow f$ is monotone decreasing on (a,b),
- if f'(x) < 0 on an interval $(a,b) \Rightarrow f$ is strictly monotone decreasing on (a,b),

Example:

$$f(x) = 2x^3 - 3x^2 - 12x + 3$$

On which open intervals is the function increasing, decreasing?

$$f'(x) = 6x^2 - 6x - 12 = 6(x^2 - x - 2) = 6(x-2)(x+1)$$

Thus f is increasing if $6(x-2)(x+1) \ge 0$ and

f is decreasing if $6(x-2)(x+1) \le 0$.

f is not increasing and decreasing as 6 (x-2) (x+1) = 0

	X1	X= -1	-1 CX <2	X= 2	2 <x< th=""></x<>
(cx)	+	0		0	+
f(x)	7	local wax.	1	local min	1

$$f(-1) = 10$$
 $f(2) = -17$

There is a local maximum of f at x = -1 with function value 10, And there is a local minimum of f at x = 2 with function value -17.

As $f'(x_0)=0$ the curve of f neither rises nor falls at point x_0 . The function remains stationary, x_0 it is a <u>stationary point</u>.

 \underline{D} : f: R R, $a \in D_f$, f is differentiable at a.

If $f'(a)=0 \Rightarrow a \text{ is a } \underline{\text{stationary point}}$.

x1, x2, x3 are stationary points.

At point x_1 the function reaches a <u>local maximum value</u>, that is in the neighboring points f(x) takes on smaller values.

At point x_2 the function reaches a <u>local minimum value</u>, that is in the neighboring points f(x) takes on greater values.

At point x3 we have neither a maximum nor a minimum point.

 $\underline{T} \colon \quad f \colon R \to R \qquad \quad a \in D_f \\ \text{f is differentiable at point a} \\ \text{f' is differentiable at point a}$

At point a there is a maximum point if

f'(a)=0 (necessary condition) and f''(a) <0 \Leftrightarrow f' changes sign at point a, f'(x) >0 if x<a and f'(x)<0 if x>a (sufficient condition).

a is a minimum point if

f'(a)=0 (necessary condition) and f''(a)>0 \Leftrightarrow f' changes sign at point a, f'(x)<0 if x<a and f'(x)>0 if x>a (sufficient condition).

Intervals of convexity and intervals of concavity for f:R -> R

We may be interested in knowing whether the slopes of the tangents to the graph of f(x) are getting bigger or smaller with increasing x.

D: A function is concave (concave down) on an interval I if f'(x) is degreasing.

T: If f''(x)>0 on an interval $I \Rightarrow f(x)$ is convex on I.

T: If f''(x) < 0 on an interval $I \Rightarrow f(x)$ is concave on I.

If f(x) is continuous at a point x_0 and changes from convex to concave or from concave to convex $\Rightarrow x_0$ is an inflection point.

T: $f: R \rightarrow R$ $x_0 \in D_f$ f, f' and f' are differentiable at x_0

 x_0 is an inflection point of f(x) if

$$f''(x_0)=0$$
 (necessary condition) and

$$f'''(x_0)>0$$
 or $f'''(x_0)<0$ $\Leftrightarrow f''(x)$ changes sign at x_0 (sufficient condition).

Example:
$$f(x) = x^3 - 3x^2 + 3x + 1$$

 $f'(x) = 3x^2 - 6x + 3$
 $f''(x) = 6x - 6$
 $0 = 6x - 6$
 $0 = 6(x - 1)$
 $x = 1$

x=1 is a stationary point and a possible inflection point.

$$f'''(x) = 6 > 0$$

X=1 is an inflection point.

Function discussion of f(x)

- 1. $D_f=?$
- x=?f(x)=02.
- Is the function odd, even or periodic? 3.
- Find the limiting values of f(x) at the borders of D_f. 4.
- Discussion of f'(x). Find the minimum, maximum, stationary 5. points of f(x), increasing and degreasing intervals (if there is any).
- Discussion of f"(x). Find the inflection point/s, convex and 6. concave intervals (if there is any).
- Draw the graph of f(x) and find R_f. 7.

Example:
$$-(x) = xe^{-x}$$

1.
$$D + = R$$

2. $f(x) = 0$ $0 = X e^{-x}$ $X = 0$
 $f(0) = 0$

$$\lim_{X\to\infty} \frac{1}{e^{X}} = 0 \implies \lim_{X\to+\infty} Xe^{-X} = 0 \text{ FD7}$$

5.
$$f'(x) = e^{-x} + x(-1)e^{-x} = e^{-x}(1-x)$$

 $f'(x) = 0$ $0 = e^{-x}(1-x)$
 $Y = 1$

$$6. f''(x) = -e^{-x}(1-x) + e^{-x}(-1) =$$

$$= -e^{-x} + xe^{-x} - e^{-x} = xe^{-x} - 2e^{-x}$$

$$= -e^{-x} + xe^{-x} - e^{-x} = xe^{-x} - 2e^{-x}$$

$$= e^{-x}(x-2)$$

$$0 = e^{-x}(x-2)$$
 $x=2$

$$X = 2$$

$$\frac{1}{1} \left(\frac{1}{1} \right) \left(\frac{1$$

$$f(2) = 2e^{-2} = \frac{2}{e^2}$$

